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THE THERMAL BOUNDARY LAYER OF A NON-FOURIER POWER-LAW FLUID

ON A PLATE WITH A VARIABLE SURFACE TEMPERATURE
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The equation for the thermal boundary layer of a non-Fourier power~
law fluid on a flat plate with an exponential distribution of surface
temperature is reduced to an ordinary equation and solved by the meth-
od of finite differences. The effect of the exponent y on the tempera~
ture profile and on the heat-transfer coefficient is determined. It is
demonstrated that the asymptotic solutions of the equation for large 0
are nearly exact.

With consideration of the non-Fourier heat-conduc-
tion law [1]
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the equation for the thermal boundary layer, with vis-
cous dissipation neglected, is written in the form
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We assume the following boundary conditions:

Uy

T=T,(x)when y;=0; T->Twas y, > x; (3)
Ty(x1) = T + AxY. (4)

Equation (2) is written as follows in dimensionless
form:
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For the boundary layer of a non-Newtonian power-
law fluid on a flat plate, u and v are determined from
the following formulas [2]:

1
w=g¢ () v=[(n(l 4+ )21 + n) 21~ e — o},

1

n=yln(l +n)x " (7)

where the prime denotes the derivative with respect
to 7, and the function ¢ satisfies the equation

9" + o "=0 (8)

with the boundary conditions

=0, ¢ =0whenn=0; ¢'>1lasn—~>o. (9

With formulas (7), Eq. (5) is reduced to an ordi-
nary differential equation

0" -+ [(n _ 1) (P'”/(P” Jon ((PN) l_n(P] o —

—on(l +n)ye (¢)"8 =0 (10)

8"+ l(c —Dn+ 11(¢") " 0" —

—on(l +n)ye ()"0 =0. (11)
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Table 1
The Values of —6'(0)
Y
n
a ‘ —035 ‘ 9 0.5 2.8 4.0
0.5 | 10 0.2431 | 05569 | 0.7155 | 0.9914 | 1.217
: 100 | 0.5152 | 1.188 | 1.535 | 2.132 2.612
07 | 10| 2.215 | 0.7555 | 0.9995 | 1.406 1.731
: 100 | 0.4750 | 1.625 | 2.149 | 3,027 3.723
1o | 10| 0.00000 1030 | [.4ll 1| 2.016 2,490
: 100 | 0.0000 | 2.223 | 3.041 4.345 5.364
{5 | 10 |-1.466 | 1.39% [ 2,012 | 2.930 3.633
: 100 |-3.331 | 3,021 | 4.342 | 6.311 7.829
g0 | 10 |—20.31 | 1.662 | 2.503 | 3.692 4,501
: 100 |—567.0 | 3.602 | 5.404 . | 7.958 9.890
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The boundary condition (3) will be
8=1 whenn=0; 00 as > oo. (12)

Levy [3] dealt with an analogous problem for a New-

tonian fluid and an arbifrary surface; the problem was
formulated in [2] for a power-law fluid and for Eq. (1).
To solve the 2-nd order linear equation (11), we
employ the method of finite differences used in [3],
with slight modifications.
We will divide the region of integration into equal
intervals of length h and, replacing the derivatives
6{' and 9{ by the finite-difference ratios, instead of
{11) we obtain

(6,4, —20; + 6, )/h% +
+ A4;(0;—6,4)h—B,9, =0, (13)
where
A =o—1n+ 11{g; " 0/2,
Bi=an(l 4 n)ve;(p)—" (14)
This yields the formula
B0 = 3,8, — b0,_, (15)
when
a; = (2 4+ KB/l + hA),
b, = (1 —RAYL + hA,). (16)

Using formula (15) for i = 1, 2, 3, ete., with con-
sideration of the boundary condition 6y = 1, which fol-
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Fig. 1. Temperature profiles in the

boundary layer at n = 0.5; ¢ = 10:

1)y =~0.75; 2) -2/3 =vg; 3) —0.5;
4) 0; 5) 0.5; 6) 2.0; 7) 4.0.

lows from (12), we find that

000 =¢;0;, —d,, (17
where
€= a6y —bici g dy=ad,—bd,_, (18)
and
6 =a, =1, c3=0
dy=b,, dy=0, d_y=—1. (19)

Applying the second boundary condition of (12) in
the form of 674, = 0 toformula (17),with r correspond-
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ing to the external edge of the boundary layer, we have
6{" =d/c,. (20)
The value of i = r is obtained from the condition
[0 —B(—Di/h e, (21)

where € is a2 small number specified in advance. This
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Fig. 2. Temperature profiles in boundary
layer at n=1.0; ¢=10: 1) v = —0.6;
2) —0.5 = v,; 3) 0; 4) 0.5; 5) 2.0; 6) 4.0.

corresponds to the approach of the ratio di/Ci to some
limit determining 6; in Eq. (20).

As a result, the solution of the problem is obtained
with formulas (14) and (16)—(21). Initially the coeffi-
cients cj and dj are calculated according to formulas
{18)=(19); the value of §; from Eq. (20) is found, and
then the profile ¢ from (17) is calculated. The solution
was obtained on a Ural-2 computer; the solution of
Eg. (8), required for the calculation of the coefficients
in (14), was found by the Runge-Kutta method with con-
sideration of the values of ¢#(0), which are known
from [2].

The quantity —6'(0), shown in Table 1, is deter-
mined from the formula

— 8 (0) = (1 —08,)/h. (22)

Comparison of the values of 6'(0) with the corre-
sponding quantities calculated by other methods for
v = 0 [2,4] demonstrated that the described method,
given proper selection of h and €, yields no less than
4 exact significant figures., Good agreement with the
results of [3] was not noted, although this can be ex-
plained by the fact that the accuracy of the difference
equation corresponding to (13) is lower by an order of
magnitude in [3] than in this paper [O(h) instead of
O(h?)], since a unilateral formula was used in [3] for
the derivative 6; (in (13) a central formula was used)
and the calculations were carried out for a constant
and rather large pitch of h = 0.1, We note that in the
calculation of 6'(0) in accordance with the unilateral
formula (22) there is no loss of accuracy, since
0" (0) = 0.

Examples of the calculated 6(n) profiles are shown
in Figs. 1-3. We see that an increase iny results in
a refinement of thermal boundary layer. When vy < 0,
the profiles exhibit a flexure point within the layer,



270

INZHENERNO~FIZICHESKI ZHURNAL

Table 2

Comparison of the Exact and Approximate Values of —6'(0)

(42
8 n Tl 100 v
exact ! f°(‘§“3‘)”a l error, %| exact fo(r3n;§la ’ error , %

0.2735 0.5 ] 0.6691 0.6664 | —0.40 1.433 1.436 +0.21 | 0.3333
0.3567 0.7 | 0.9128 | 0.9121 —0.08 1.963 1,965 -40.10 | 0.2941
0.4696 1.0 | 1.246 1.248 +0.16 2.687 2.689 +0.07 | 0.25
0.6189 1.5 ) 1.691 1.697 -+0.35 3.653 3.656 40,08 | 0.2
0.7265 20 | 2.014 2.023 +0.45 4.356 4.358 ~4-0.05 1 0.1667

while for some y =, the condition '(0) = 0 is satis-
fied. When y < vy, 6%(0) >0 and the temperature within
the boundary layer exceeds the wall temperature (4 >

>1).
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Fig. 3. Temperature profiles in the
boundary layer at n = 1.5; o = 10:
1) y = =0.5; 2) =0.4 =vy; 3) 0;

4) 0.5; 5) 2.0; 6) 4.0.

Using formulas (1), (4), (6), and (7), we determine
the local heat-transfer coefficient of the plate:

1
NuR = — g K/ALYH p U= ExiR,, ¥, (23)

=—[n( +n] T e Or (0). (24)

It follows from formula (23) that when v = n/(1 + n),
Qy is independent of x;.

In view of the fact that the problem is solved for
o > 1, the thermal boundary layer is much thinner than
the dynamic boundary layer and the following relation-
ships of [4] are approximately valid:

"=const=0, ¢ =0, ¢ =fy, ¢=pY2. (25

Having substituted (25) into (10), we obtain the equation
8" 4an® 4 bnd =0, (26)

where

a=cnp="2, b=—on(l+n)yp" @n

In the general case, Eq. (16), with substitution of
the variables

0 =n"texp(—anW/6) W, z=an¥3, (28)

can be transformed into the Whittaker equation [5]

W
dz2

/4 —m?

22

+(——1+i+ oo (29
4 z
when k = (b - @)/3a, m = 1/8, whose solution is ex~
pressed in the form of series in powers of z or in con-
tour integrals with the parameter z. These solutions
are complex for the calculations.
For certain relationships between b and a, Eq. (26)
is easily solved under the conditions of (12). Thus,
when b = 2¢ we have the solution

9 = exp(—a W/3), (30)

which corresponds to the case §'(0) = 0 and therefore
defines the quantity y;. It is precisely when b = 2a
that it follows from (27) that

Yo = — /(1 +n). (31)

Calculations have shown that formula (31) for the val-
ues of ¢ and n under consideration within the limita-
tions of 4 significant figures is exact, while the pro-
files of (30) virtually do not differ from the results of
the numerical solution.

Another simple solution is derived for b = —a, i.e.,
when vy = 1/2(1 + n), and this solution is in the form

6 =exp(—an¥/3) —ay jnexp(-—an%)dn, (32)
1

whence

— 07 (0) = (a/3)\/% T'(2/3) = 0.7452 (o n B>-m)15.  (33)

The accuracy of formula (33) is sufficiently high, as
can be seen from Table 2.

The solution for the case b = 0 (y = 0) was given in
[4] and it was also close to an exact solution.

The asymptotic equation (26) thus yields a solu~
tion that is little different from the solution of Eq.
(10).

NOTATION

q is the heat flux in the boundary layer; qy is the
same, at the wall; H is the thermal conductivity char-
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acteristic; K and n are the rheological characteristics
of the fluid; x; is the longitudinal coordinate; y; is the
transverse coordinate; u; and vy are the projections of
the velocity vector onto the x~ and y(-axes, respec-
tively; U is the velocity of external flow; L is the char-
acteristic length; R is the Reynolds number; p is the
fluid density; Cp is the specific heat capacity; A and

v are the constants (formula (4)); o is the Prandtl num~
ber; Nu is the Nusselt number.
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